伟大的几何数学大师
少年数学天才-----------黎曼
1826年9月17日,在德国汉诺威的布列斯伦茨,黎曼(1826-1866)出生在一个乡下牧师之家,是6个孩子中的次子。
黎曼从小酷爱数学。他6岁时开始学习算术,并显现出他的数学天才。他不仅能解决所有留给他的数学问题,而且还经常提一些问题来捉弄他的兄弟姐妹。10岁时他跟一位职业教师学习高级算数和几何,很快便超过了老师,常常对一些问题能做出更好的答案。
黎曼14岁时到汉诺威市上中学。由于经济拮据,他总是靠步行奔波于汉诺威市与乡间小村庄之间。当然他更没钱去买参考书。幸运的是中学校长及时地发现了他的数学才能,考虑到他经济上的困难,校长特许黎曼可以从自己私人藏书室里借阅数学书籍。在校长的推荐下,黎曼借了一部数学家勒让德的《数论》,这是一部共859页的4大本的名著。黎曼十分珍惜这种读书机会,他如饥似渴地自学起来,6天之后,黎曼便学完并归还了这本书。校长问他:“你读了多少?”黎曼说:“这是一本了不起的书,我已经掌握了它。”几个月之后,校长就这本书的内容考他。黎曼对答如流,并且回答得很全面。利用校长的藏书,黎曼还抓紧时间很快地自学了大数学家欧拉的著作,由此掌握了微积分及其分支。黎曼不仅从欧拉的著作中学到了数学知识,还学到了欧拉研究数学的技巧。
大学生涯
19岁时,黎曼进入格丁根大学学习,为了在经济上帮助家庭以尽快找到一个有报酬的工作,他先攻读哲学和神学,但是,除了这两门课程以外,他也去听数学、物理学课程。他听了斯特恩关于方程论和定积分、高斯关于最小二乘法以及戈尔德斯米特关于地磁学的数学讲座,对数学专业产生了难以割舍的兴趣。
黎曼向父亲讲述了这一切,请求允许自己改学数学专业。父亲由衷地同意了他的请求。黎曼极为高兴,并深深地感激父亲。
1847年,为了师从更多的大师,黎曼转学到柏林大学,就学于大数学家雅可比、狄利克雷、斯泰纳和艾森斯坦门下。他从雅可比那里学到高等力学和高等代数,从狄利克雷那里学到数论和分析学,从斯泰纳那里学到现代几何,从文森斯坦那里学到椭圆函数论。
在此期间,他极为勤奋,甚至放假期间也不休息。1847年秋假,黎曼找到几份巴黎科学院《院刊》,上面载有数学家柯西新发表的关于单复变量解析函数的论文,他一眼便看出这是一种新数学理论,于是一连几个星期闭门不出,潜心研究柯西的论文,并酝酿出他在这个专题上的新见解,为4年后撰写博士论文“单复变量函数的一般理论的基础”奠定了基础。
黎曼不仅认真研读大师的学术专著,而且虚心地向大师求教。有一次,狄利克雷来格丁根度假,黎曼趁此机会向他求教数学问题,并将自己未定稿论文交给他,请他提意见。狄利克雷被黎曼的谦虚、真诚和天才迷住了。他与黎曼长谈了两个小时,给黎曼的论文提了不少意见,给黎曼正在研究的课题作了许多指点。黎曼深感受益匪浅,他说没有狄利克雷的指点,他将不得不在图书馆里做好几天的吃力研究。
生活虽然清贫,但学习极为勤勉,这使得黎曼在大学毕业时获得了丰硕的成果。1851年底,黎曼将其博士论文呈交给大数学家高斯审阅。高斯在看了论文之后兴奋不已,对黎曼的论文作出了高度评价,这对高斯来说是罕见的。高斯评语道:“黎曼先生交来的论文提供了令人信服的证据,说明作者对该文所论述的这一问题作了全面深入的研究,说明作者具有创造性的、活跃的、真正的数学头脑,具有灿烂丰富的创造力。”
贫困中奋进
1852年初,黎曼凭借优异的学术表现取得了博士学位,并留在了格丁根大学。十九世纪中叶的德国,科学几乎与国家的经济全然无关。大学的设立仅在训练律师、医师、教师和传教士士,以及提供贵族子弟和富家子弟渡过引人侧目及受尊敬的岁月的场所。只有正教授才可以领政府的津贴,并且可教授正规标准课程,这些课程都是一些基础科目,上课的学生多,因此教授收到的学费也就多了,这就是为什么当时课程水准低落的原因,因为如果课程太难,就没有办法收到许多学生,从而影响到教授们的收入,毕竟贵族子弟和富家子弟上大学的目的并非真心向学。讲师们则没有政府津贴并且轮不到教基本正规课程的机会,全然靠来听课的学生的学费维生,通常,听课的学生不会多,因此收入也就相当微薄,生活非常困苦。担任讲师是成为正教授的必经途径。但是却没有明文规定什么时候能将一位讲师升等为教授,为了照顾特别值得重视的学者而却没有正教授的空缺时,政府可任命他为“客座教授”,使他具有教基本正规课程的资格,增多他的收入,但是这个任命附有条件,言明政府不付任何津贴。因此,在担任讲师期间,黎曼没有任何自主的生活费来源,生活依旧贫穷。
但黎曼不顾生活上的贫困,仍然把全部精力投向数学。他认为只要能够勉强维持生活,能够让他研究数学,他就心满意足了。他从不因经济上的拈据而感到沮丧。他一方面积极准备“无薪讲师”的就职演讲论文,另一方面认真从事数学物理方面的研究工作。他的就职论文具有相当的难度。当初为了确定论文的选题,他向高斯提交了3个题目,以便让高斯在其中选定一个。其中第3个题目是涉及几何基础的,这个题目黎曼当时并没有多少案头准备工作,因此黎曼从心底里希望高斯不要选中它。可是,高斯对第3个题目却深有研究,他已思考这个问题达60年之久。出于想看看黎曼对这个深奥的问题会做些什么样的创造性工作,高斯指定第3个题目作为黎曼就职演讲论文的题目。
事后,黎曼在向父亲谈起这件事时说,“所以我又处在绝境中了”、“我不得不做出这个题目”。
对数学物理研究,黎曼也具有无限的热情,他当时曾对人说:“我对于把一切与物理规律结合起来的数学研究非常入迷。”“我通过对电、光、磁等之间联系的总研究,发现了对这个现象的解释。这件事对我很重要,因为这是我第一次能够把我的工作应用到未知的现象上。”这两项研究在当时都是高水平的,因而也是极困难的。黎曼不顾生活清贫、营养不良,超负荷地忘我工作,长时期过四度而紧张地思索,以致他常常体力衰竭,甚至病倒。一旦身体稍有复原,他又继续研究。功夫不负有心人。1854年6月10日,黎曼以“关于构成几何基础的假设”论文作了就职演讲,受到了与会数学家们的认可和好评。高斯听完之后大为惊异,感到这个年轻人处理这个难题非常之好,他赞不绝口。黎曼的这篇论文被人们认为是19世纪数学史上的杰作之一。