当y=cosx x ∈ [-∏+2k∏ , 2k∏ ]时,曲线逐渐上升,y的值由-1逐渐增加到1;
x ∈ [2k∏ , ∏+2k∏
]时,曲线逐渐下降,y的值由1逐渐减少到-1;
五、例题讲解:
例1:
cos(-23∏/5)-cos(-17∏/4)
问:能否求出上式的值?能否求出其值比0大还是小?须运用我们这节课所学的哪部分知识?
求上式的值大于0还是小于0?
∵y=cosx是偶函数,∴原式为cos(23∏/5)-cos(17∏/4)
可知cos(23∏/5)< cos(17∏/4)
即cos(-23∏/5)-cos(-17∏/4) <0
例2: y=√ sinx + 1
提出问题:学生能提出什么问题?
教师引导:上式有没有最大值,最小值,值域,什么时候取得最大值?什么时候取得最小值?奇偶性如何?能不能画出它的图象?图象与y=cosx有什么关系?
求取的最大值的x的值所有集合。
当x取最大值时的取值为 x=k∏+∏/2 (k∈r)
即取的最大值的x的值的所有集合为[x ∣ x=k∏+∏/2 (k∈r)]
例3:y=√ sinx 的定义域。
由0 ≦sinx≦1 可得:
x的定义域为: 2k∏≦x≦&pro
d;+2k∏ (k∈r)
即x的定义域为[2k∏,∏+2k∏] (k∈r)
问:可不可以求值域?有没有奇偶性?如果有的话,是奇函数还是偶函数?
拓展:求上式函数的奇偶性。一般来讲,学生会用定义法求出上式既不是奇函数,也不是偶函数。
结果:上式既不是奇函数,也不是偶函数。
问:为什么呢?
强调:函数有奇偶性的必要条件是定义域关于原点对称。
六、课堂小结:
通过本节学习,要求掌握正、余弦函数的性质以及性质的简单应用,解决一些相关问题。
七、作业布置:使学生通过作业进一步掌握和巩固本节内容