课题三:求三个数的最小公倍数
设计意图:教育改革的趋势,引导学生自主学习是素质教育的精髓,课堂教育是实施素质教育的“主渠道”。这就要求教师合理运用学习策略最大限度地调动学生的积极性,鼓励学生对待问题敢想、敢问、敢说、敢做,让他们在知识王国里自由的探索,从发现中寻找快乐、主动获取知识、体会知识的使用价值。这节课学生已有求两个数的公倍数的基础。所以安排学生自学,通过小组合作学习没什么问题。
教学要求 使学生在理解的基础上学会求三个数的最小公倍数。
教学重点 求三个数的最小公倍数与求两个数的最小公倍数的区别。
教学难点 会求三个数的最小公倍数。
教学过程
一、创设情境
求下面各组数的最小公倍数。(学生做完后,集体订正时,点几名学生说怎样求两个数的最小公倍数)
5和8 7和28 12和16
二、揭示课题
我们已经学会求两个数的最小公倍数,怎样求三个数的最小公倍数呢?现在我们一起来学习。(板书课题:求三个数的最小公倍数)
三、探索研究
1.教学例4。
(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)
8=2×2×2
12=2×2×3
30=2 ×3×5
(2)分组讨论。
①8、12、30的最小公倍数必须包含哪些质因数?
②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(2×2×2×3×5)这些质因数是否包含了8、12和30所有的质因数?
③8、12和30的最小公倍数是多少?
(3)归纳:8、12和30的最小公倍数,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(2×2×2×3×5=120)就是8、12和30的最小公倍数。
(4)求三个数的最小公倍数的方法。
求三个数的最小公倍数与求两个数的最小公倍数的方法大同小异。(板书短除式)
8 12 30
①先用什么数作除数去除?
②再用什么数作除数去除?(重点指导:另一个数要移下来)
③一直除到什么时候为止?
④最后怎样做就可以求出三个数的最小公倍数?
(5)比较求三个数的最小公倍数与求两个数的最小公倍数有什么不同?(先可让学生说,然后老师归纳)
相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。
不同点:求两个数的最小公倍数时,除到两个商是互质数这止;而求三个数的最小公倍数时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。
四、课堂实践
1.做教材第75页的“做一做”。
2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在最小公倍数里多取了一个质因数2。
3.做练习十五的第13题,学生口答。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1.做练习十五的第10、11、14题。
2.有兴趣、有余力的学生可做练习十五的第21*~23*题。
课后反思:通过自学,让学生知道应先用三个数的公有质因数去除,三个数没有公有的质因数了,再用每两个数公有的质因数去除,要除到两两互质为止。如果三个数中两两互质,这三个数的乘积就是它们的最小公倍数;如果三个数中较大数分别是两个较小数的倍数,那么较大的数就是它们的最小公倍数。
课题四:最大公约数和最小公倍数的比较
设计意图:数学猜想是数学中的一种思想与方法,是根据已知的事实和数学知识,对未知量及其关系所作出的一种似真判断。任何猜想都要经过验证,才能确定其是否具有普遍意义。猜想验证的过程,也就是学生主动参与数学知识探索的过程。关于"猜想--验证",波利亚有一段精彩的论述:"我想谈一个小小的建议,可否让学生在做题之前猜想该题的结果,或者部分结果。一个孩子一旦表示出某种猜想,他就把自己与该题连在一起,他会急切地想知道他的猜想是否正确。于是,他便主动地关心这道题,关心课堂的进展,他就不会打盹睡觉和搞小动?quot;。
教学要求 通过比较,使学生进一步分清求最大公约数和最小公倍数的相同点和不同点,并能正确地求出几个数的最大公约数和最小公倍数。
相关分类