学生活动
教师的组织和引导
教学意图
学生基于已有的数学知识进行演算。
播放细菌分裂的录像或演示细菌分裂的计算机模拟动画。
提示:在自然界中细菌无处不在,有些细菌的大量繁殖会导致疾病。假如现有一种细菌,在适宜的温度、湿度等环境下,每20 min左右通过分裂繁殖一代。
引导学生思考:
1.细菌的生殖方式是怎样的?
2.72 h后,由一个细菌分裂产生的后代数量是多少?
3.n代细菌数量是多少?
通过创设具体的情境,让学生感受活生生的生命现象。
认识细菌种群数量增长的数学规律。
学生讨论,充分陈述自己的观点。
提出问题,组织讨论:
1.对细菌种群数量增长而言,在什么情况下2n公式成立?
2.这个公式揭示了细菌种群数量增长的什么规律?
3.在学过的生物学内容中,还有哪些生物学问题可以用数学语言来表示。
提示:数学工具在生物学研究中的作用越来越突出。
用数学语言揭示生物学问题时,要充分考虑到生物学自身的特点。
认识到在生物学中有许多现象和规律可以用数学语言来表示。
学生独立操作完成图表,相互交流结果。
请学生算出一个细菌产生的后代在不同时间的数量,并填写教材中的表格,然后画出细菌的种群数量增长曲线。
提示:这是在理想条件下对细菌种群数量的推测。
引导学生讨论,同数学公式相比,曲线图表示的模型有什么局限性?
认识种群数量增长模型的另一种表现形式。
小结:在描述、解释和预测种群数量的变化时,常常需要建立数学模型。数学模型的表现形式可以为公式、图表等。
学生讨论建立“培养液中酵母菌种群数量的数学模型”的方案:程序和方法。
提出问题,组织讨论:如何建立“培养液中酵母菌种群数量的数学模型”,我们应该怎么做?
结合本节的探究实验,认识建立种群增长模型的程序和方法。
学生讨论:
1.野兔种群增长的原因有哪些?
2.怎样用数学语言来描述野兔种群增长的规律?
3.如果用N0表示野兔种群的起始数量,用λ表示野兔种群数量每年的增长倍数,用Nt表示t年后野兔种群的数量,那么,Nt为多少?
4.根据上述素材,估算1869年时,野兔种群数量为多少?(说明计算方法)
5.列举在自然界中还有哪些与素材中野兔种群数量增长相类似的情况。
提出问题,组织讨论:以上讨论的是在实验条件下种群的数量变化,在自然界中种群的数量变化情况如何?
提供素材:《光明日报》消息
澳大利亚野兔成灾。估计在这片国土上生长着6亿只野兔,它们与牛羊争牧草,啃树皮,造成大批树木死亡,破坏植被导致水土流失,专家计算,这些野兔每年至少造成1亿美元的财产损失。兔群繁殖之快,数量之多足以对澳洲的生态平衡产生威胁。
澳洲本来没有兔子,1859年,一个叫托马斯·奥斯汀的英国人来澳定居,带来了24只野兔,放养在他的庄园里,供他打猎取乐。奥斯汀绝对没有想到,一个世纪之后,这24只野兔的后代达到6亿只之多。(有条件的学校,教师可播放澳大利亚野兔成灾的录像片。)
通过具体实例,加深对数学模型的理解,并用数学语言解释种群数量增长的规律。
明确“J”型种群增长的原因。
小结:自然界确有类似细菌在理想条件下种群数量增长的形式。该种群数量增长的数学模型可表示为“J”型曲线,或数学公式:
Nt=NOλt
学生思考:有哪些因素制约着种群数量的增长?
学生讨论。
如果自然界的生物种群都是以“J”型方式增长,地球早就无法承受了。