1.进一步巩固最大公约数和最小公倍数的计算方法.
2.掌握求两个数最大公约数和最小公倍数的相同点与不同点.
教学重点
比较求两个数的最大公约数和最小公倍数的相同点和不同点.
教学难点
区分求两个数的最大公约数和最小公倍数的计算方法.
教学步骤
一、铺垫孕伏.
出示下列各数:5 28 25 42
1.指名学生说出:这些数中,哪些能被2整除,哪些能被3整除,哪些能被5整除.
2.引导学生从这列数中选出分别符合下列条件的几组数,求出各组数的最大公约数和最小公倍数,并说明是怎么求出来的.
(1)较大数是较小数倍数的.
(2)两个数是互质数的.
(3)两个数既不互质,较大数又不是较小数倍数的.
谈话引入:求两个数的最大公约数和最小公倍数都用分解质因数法,但它们的计算方法不完全一样.这节课我们就来学习“最大公约数和最小公倍数的比较”的内容.
(板书:最大公约数、最小公倍数的比较)
二、探究新知.【演示课件“比较”】
(一)教学例5 求28和42的最大公约数和最小公倍数
1、学生板演.
2、整理方法:
求28和42的最大公约数,先用短除形式分解质因数,直到两个商是互质数为止,然后把所有的除数乘起来.(板书:把所有的除数乘起来)
求28和42的最小公倍数,先用短除形式分解质因数,直到两个商是互质数为止,然后把所有的除数和商乘起来.(板书:把所有的除数和商乘起来)
(二)分析对比,寻找异同.
1、出示下表.
求两个数的最大公约数
求两个数的最小公倍数
相同点
不同点2、分组讨论:
求两个数的最大公约数和最小公倍数有什么相同点和不同点?
3、信息反馈,总结填表.
求两个数的最大公约数
求两个数的最小公倍数
相同点
用短除的形式分解质因数,直到两个商是互质数为止.
同左
不同点
把所有的除数乘起来.
把所有的除数和商乘起来.
4、针对不同点探究真知.
(1)探讨:为什么求两个数的最大公约数是把所有的除数乘起来,而求两个数的最小公倍数是把所有的除数和商乘起来?
(2)小结:两个数的最大公约数是它们的公约数中最大的,它必须包含两个数全部公有的质因数.所有除数正好是两个数全部公有的质因数,所以,求最大公约数就要把所有除数乘起来.而求最小公倍数既要包含两个数全部公有的质因数,又要包含各自独有的质因数.两个数的商分别是它们独有的质因数.所以求两个数的最小公倍数要把所有的除数和商乘起来.
(三)反馈练习:
根据短除式,你能很快地说出24和36的最大公约数和最小公倍数吗?
三、全课小结.
今天这节课我们学习了哪些知识?通过今天的学习,你有哪些收获?
四、随堂练习.【演示课件“比较”】
1.选择题:根据下面的短除式,选择正确答案.
(1)18和30的最大公约数是( )
A:2×3=6 B:3×5=15 C:2×3×3×5=90
(2)18和30的最小公倍数是( )
A:2×3=6 B:2×3×3×5=90 C:18×30=540
2.改错:找出下列各题错在哪里,并说明如何改正.
(1)
60和90的最大公约数是 2×3=6,
60和90的最小公倍数是 2×3×10×15=900.
(2)
7和12的最大公约数是7.
7和 12的最小公倍数是 7×1×12=84.
3.下面的数,哪些能被2整除?哪些能被3整除?哪些能被5整除?
12 21 36 45 60 105 144 255
4.很快说出下面每组数的最大公约数和最小公倍数.
3和5 4和6 10和16
8和7 6和10 9和15
9和27 7和21 7和12
五、布置作业.
1、求出下面每组数的最小公倍数
2、5和10 8、16和24 6、8和14
3、6和9 5、7和15 8、9和18
2、幸福村小学某班利用假日为饲养场割草.第一小队7个人3小时割了73.5千克.照这样计算,全班48人用同样时间割草多少千克?
六、板书设计.
相关分类