我们经常遇到一类分配物品的题目,在这类题目中,将一些物品分给几个人,每个人都得到整数个物品。而在有些题目中,经常出现有的人得到分数个物品的情况,而此物品又是不可分割的,这就容易使人迷惑。其实,在解答这类问题时,如果我们能换个思维方式,尝试一下逆向思维,往往能有惊奇的发现。
分月饼
中秋节到了,班级里买回了一箱月饼准备分给同学们。第1个同学取走了1块月饼和剩余月饼的1/9,第2个同学取走了2块月饼和剩余月饼的1/9,第3个同学取走了3块月饼和剩余月饼的1/9,第4个同学取走了4块月饼和剩余月饼的1/9,依次类推,把全部月饼一点不剩地分配给了全部同学。
请问班级共有多少个同学,共有多少块月饼?
分析与解答
此题需逆向思考。
最后一个同学取走的月饼数目应与全班的人数相同。他前面一个同学取走全班人数减1块月饼和剩余月饼的1/9。由此可知最后一个同学得到的是剩余月饼的8/9。即,在最后一个同学取月饼的时候,剩余月饼应是8的倍数。
假设最后一个同学取走的是8块月饼。那么,全班共有8个同学。第7个同学取走7块月饼再加上剩余9块月饼的1/9共8块月饼。第7、第8个同学一共取走16块月饼,这应该是第6个同学取走6块月饼后剩余月饼的8/9。我们可以得到第6个同学取走6块月饼后剩余的月饼数为16/(8/9)=18。第6个同学取走的月饼数为6+18/9=8。
第5个同学取走5块月饼后剩余月饼的8/9为8+8+8=24块。则第5个同学取走5块月饼后剩余的月饼数为24/(8/9)=27块。第5个同学共取走5+27/9=8块月饼。
第4个同学取走4块月饼后剩余月饼的8/9为8+8+8+8 =32块。则第4个同学取走4块月饼后剩余的月饼数为32/(8/9)=36块。第4个同学共取走4+36/9=8块月饼。
第3个同学取走3块月饼后剩余月饼的8/9为8+8+8+8+ 8=40块。则第3个同学取走3块月饼后剩余的月饼数为40/(8/9)=45块。第3个同学共取走3+45/9=8块月饼。同样,第2、第1个同学也分别取走8块月饼。
综上所述,每个同学都取走8块月饼。因此,共有8个同学,64块月饼。